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Abstract

This paper has a two-fold objective: determination of yearl
and optimum reaction wheel sizing. The first objective is co
the attitude control system over a spacecraft's lifetime. This,

y momentum accumulation due to solar radiation pressure,

nfronted while determining propelilant consumption by
however, cannot be obtained from the daily momentum

accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the
spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other
off-normal to different extent at different times to the sun rays . The paper therefore first develops commands for the
arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom
and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both
arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an

orbit and then over a year are determined. The remain

der of the paper is concerned with designing reaction wheel

configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum
requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally,
their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are

compared and contrasied.

1. Introduction

This paper is concerned with: a) determination of
momentum accumulation due to solar radiation torque acting on
an earth-observing spacecraft with sun-pointing solar arrays, and
b) reaction wheel sizing and its pyramid configuration
optimization for maximum momentum storage and minimum
power consumption. These topics are classical; yet it seems
there is no single reference in the published literature that treats
this subject with sufficient comprehensiveness so that a control
engineer, confronting this task, could accurately size the
reaction wheels, select a wheel configuration, and estimate
yearly propellant consumption for momentum dumping, all
without extensive or expensive computer simulation. This
paper, hopefully, fulfills that need. The contents of the paper
and related previous contributions known to this author are
summarized below.

Solar arrays’ influence on spacecraft configuration, attitude
control system, and mission operation is so far-reaching that a
brief elaboration of this topic appears in order. For an earth-
pointing three-axis stabilized spacecraft rotating once per orbit
about the orbit normal, an attached solar array must at least
have one relative rotational degree of freedom about the orbit
normal so that the array can be held inertially fixed and sun-
pointing. Although economical, this arrangement becomes
inadequate if the spacecraft's life span is more than several (say,
six) months, because in this duration the earth moves around
the sun in the ecliptic plane so much that the sun-rays deviate
significanlly away from the array normal and therefore a
considerable power loss begins to occur. Consequently, for
spacecraft with one year or longer life span, the solar array is
accorded a second degree of freedom in the form of spacecraft
yaw rotation. If the spacecraft at hand has only one solar array,
this yaw rotation is of 180 degrees and may take place once in
six months when the off-normality between the sun-rays and the
array on one side of the orbit plane exceeds limits. The 180-
degree rotation takes the solar array 10 the other side of the orbit
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plane where the off-normality in the following six months will
be smaller. Although to minimize cost and to gain simplicity,
there are many spacecraft with one solar array (TOPEX for
example), this configuration is asymmetric and might generate
significant disturbance torques on the spacecraft arising from
solar radiation pressure, gravity gradient, atmospheric drag, and
thermal shocks at each sun-rise and sun-set; savings are
therefore somewhat offset by stronger control torque
requirements. To eliminate this asymmetry and/or to generate
enough power for on-orbit needs, two solar arrays, one on each
side of the orbit normal, are sometimes employed. Then, instead
of once in six months, a yaw rotation from zero to 2x or from
_r/2 to +7/2 takes place as continuously as one about the orbit
normal. The corresponding sun-tracking commands were derived
by McElvain (1961)! and Kalweit (1983)2. GPS satellites have
opted for this approach. Although TOPEX satellite has one
solar array, it also employs continuous yaw rotation instead of
180° yaw rotation. Some missions are not interfered with by
these persistent yaw rotations, but others are. For these latter
situations, Kalweit? has determined best-fit minimum-power-
loss, average yaw angles, constant over each half orbit.
Nonetheless, persistent yaw rotation of a spacecraft is
cumbersome because the torque and momentum capacity of the
reaction wheels, usually employed for attitude control, must
now accommodate the yaw rotation. A superior alternative
appears to be, at least on the basis of technical merits if not
cost, to bestow each array with two rotational degrees of
freedom relative to the spacecraft, one about the orbit normal
and the other about an axis in the orbit plane. Such is the
spacecraft configuration considered in this paper; that is, a
spacecraft with two solar arrays, arranged symmetrically on each
side of the orbit normal and each array having two articulation
degrees of freedom. Section 2 of the paper furnishes sun-
wracking commands about the two just-mentioned axes. Explicit
relationship is furnished between the so-called beta angle (also
called flap angle) of the array and parameters such as earth's
position in the ecliptic plane, the angle between the ecliptic and
the equator planes, inclination of the spacecraft orbit, and its
ascending node angle.
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Turning our attention to solar radiation torque on a space
vehicle, this arises from arrays as well as the vehicle bus.
Moreover, of the two arrays, one may be normal to the sun
while the other may be off-normal (thermal requirements may
dictate so), and the bus and the arrays may cast shadow on each
other at different times, changing the lit area, center of pressure,
and moment arm from the vehicle mass center to the pressure
center; see an example of shadowing in Evans (1964)°. These
complex effects are formulated and illustrated in Section 3. For
typical spacecraft however, the torque contribution of the bus
and the shadow effects are secondary; so by ignoring them,
simple radiation torque expressions for arrays normal as well as
off-normal to the sun are obtained which are used in Section 4
to determine secular and cyclic momentum accumulation in the
roll-yaw plane and about the pitch axis. Because of significant
variation in the array's flap angle over a year, the corresponding
momentum accumulation over each orbit changes considerably,
particularly if the array is positioned off-normal to the sun. A
simple expression of annual, secular momentum accumulation
is therefore developed and illustrated in Section 4, and its
dependence on the orbit inclination is investigated. From this
result, yearly propellant consumption for momentum dumping
is determined easily. DeBra and Cannon (1961)* have also
performed preliminary analysis along these lines.

Section 5 of the paper is concerned with sizing reaction
wheels and optimizing their pyramid configuration, keeping
cost and redundancy in mind. Four-, six-, and three-wheel
configurations with and without one wheel failure are
considered. Optimum cant angles for these pyramid
configurations for minimum power consumption and for given
ratios between the roll, pitch, and yaw torque requirements are
determined. Simple relationships are developed relating
momentum or torque requirements about spacecraft axes to
those about the wheel axes for all configurations with and
without one wheel failure. These relationships then provide the
required momentum and torque capacities of the wheels. The
paper is finally concluded in Section 6.

2. Commands for Sun-Tracking

Coordinate Transformations

In order to express sun-ray direction from the sun to the
Earth in terms of solar arrays’ frames, and to develop pointing
commands for the arrays for tracking the sun,the following
angles, all anticlockwise positive unless stated otherwise, are
introduced. The angle v, measured from the the first day of
autumn (September 23), denotes the earth’s rotation around the
sun in the ecliptic plane. The clockwise positive angle A ( =
23.44 degrees) about the Vernal Equinox is the angle between
the ecliptic and the equatorial plane. The angle Qp and i are,
respectively, the usual ascending node angle of the spacecraft
orbit in the equatorial plane and the orbit inclination angle from
the equatorial plane. In this paper we will be concerned
exclusively with circular spacecraft orbit. The local-vertical-
local-horizontal (LVLH) frame F<: X Y¢ Zc at any point in
the orbit locates the spacecraft mass center with X, along the
velocity vector of the spacecraft, Z. along the local vertical
from spacecraft to the earth, and Y. opposite to the orbit
normal. To maintain the earth-pointing attitude, the spacecraft
rotates clockwise about Y. -axis at the rate —wq (wg thus is a
positive quantity and it equals the orbit rate of the spacecraft).

The frame & € is the standard roll, pilch, yaw frame of a
spacecraft with these three attitude angles zero. When the angles
are nonzero, the spacecraft frame is denoted F9: X Yg Zg, as
shown in Fig. 1. In this paper however, we assume that the
spacecraft is controlled perfecdy, and it always maintains its
ideal LVLH orientation.

We now define the orientation of the solar arrays relative o0
the frame F ¢ or, equivalently, 0. As stated in the Introduction
and portrayed in Fig. 1, the two arrays turn relative to the
spacecraft at the two-degree-of-freedom hinges Oy and O,.
Considering +y-array first, its relative rotation is measured from
the frame X9 Y10 Z10 which is parallel to the spacecraft frame
9. In order to track the sun, the first rotation of the array is
01y about the longitudinal axis yjg; this rotation annuls the
clockwise rotation wot of the earth-pointing spacecraft measured
from the ascending node line. The second rotation (often called
beta angle), denoted here 8,,, takes place about the once-
displaced Zp-axis. We thus arrive at the array-fixed frame & 1.
X1 Yy Zy, with the array in the Y1Z plane and its outward
normal along X;. Note that when the array is normal to the
sun, the sun vector S from the sun to the earth is opposite to
the array normal X]. The transformation between the frame F0

and the array frame & ! for the sequence 81y, 01z 1s

cBi1y cBi12 —~01ys01, sB1y

Xo X1

Yo | = s01, cBi; 0 Y,

Z —s01ycOiz sO1y sO12 cOiy 4
(1)

where c(*) = cos(*) and s(*) = sin(+). The inital orientation of the
—y-array is the same as that of the +y-array, and the rotations of
the -y array are conveniently measured relative to the frame
X20Y20Z20 with Ya¢ opposite to Yo and Zg opposite to Zo.
The frame X20Y20Z9¢ is selected such that the solar cell face
of both arrays are on the same side. The first rotation 87y about
the Ypp-axis (Fig. 1) nullifies the orbit rotation, and the
rotation 67, about the edge Z; brings the array to the desired
normal orientation relative to the sun. The transformation
matrix from the spacecraft frame # 0 to the array-fixed frame

F2: X9Y0Zp is

X 02Oy —sB2:¢02y  sB2y X,
Yo } =| -sy, <8y 0 Y } @
Z Z

Ceh Sezy -s0 22 Sezy —0 2y

Commands For Sun-Tracking
Because the solar arrays are hinged to the spacecraft, it is helpful
to express the unit vector § from the Sun to the Earth in the
spacecraft frame F0, or equivalently, in the orbit frame F¢. Let
Sc1. Sc2, and S¢3 be the components of § in & €. Then, using
coordinate transformations involving the angles v, A, QN, i,
and wqt, defined above, these components are found to be
Sc1 = copt {ci(-sQNCV + CQNCAsV)+sisAsv ]
-SOL(CEAINCY + SQN cAsv)
S¢2 = si(-sQNCV + CQNCAsV)—cisAsv
Sc3 = -swot {ci(-sQNCv + CQNCASV)+sisAsv]
—<OOUCANCY + QN cAsV) 3)
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Fig. 1. A Spacecraft with +Y and -Y Arrays, their Frames, and
Articulation Degrees of Freedom

+Y-Array Commands

Because the first rotation 81y about the longitudinal axis
y10 annuls the once-per-orbit rotation of the earth-pointing
spacecraft, it may be clear that, ideally,

B1y () =wot + 919 @)

where 01¢ is 91y(t=0). Note that Gly(l) is anticlockwise
positive, whereas the negative sign of wgt has already been
accounted for in (3), so wgt in Eq. (4) is positive: opt>0. To
determine 019 and the second rotation 81,, we observe that
when the array is normal 10 the sun, the incoming sun vector §
is opposite to the outgoing array normal Xj:

sFlatxivizi T =(-100)7 )
where the superscript T means the transpose of the column

vector. Substituting Eq. (5) in Eq. (1) the sun-ray vector S in
the LVLH frame is found to be .

g—'O —Cely celz

Scl
Sc = —s0 z
Sy : ©

The unknown initial angle 8¢ is determined by substituting
Eq. (4) in Eq. (6), yielding:

~[ cQN cv + SQN cA sv]
—[ci(-sQN cv + cQN CA sv) + si sk sv ]
0]

where the negative signs in the numerator and denominator are
retained so as to arrive at a unique value of 8,5 within the range
-1 £ 0, < m; this will ensure that the solar cell face of the
array looks at the sun. The array’s inclination angle 0,7 is
obtained from the second components of Egs. (3) and (6):

010 = tan~!

817 = sin~! (si (SQN cv ~ cEIN cA sv) + ci sA sv] @®)

Eq. (8) indicates that, as the earth rotates around the sun (0 < v
< 2m), the angle 81, varies sinusoidally with a certain
amplitude; this is illustrated below in three examples.

Example |: Qy=0,v=m2
The correctness of Eq. (7) and Eq. (8) can be illustrated by
considering v = n/2 and QN = 0° for which

Big=tan! 0/[-c(A-i)] ==x (9a)
B1,=A-i (9b)

If we further assume that the satellite orbit lies in the ecliptic
plane, which means the orbit inclination i equals A, we will
have 817 = 0. In Eq. (9a), the choice 8,7 = © and not zero is
selected to ensure that the solar cell face of the array, not its
back side, is towards the sun. Moreover, Eq. (9a) and 81, =0
together imply that in order to be normal (o the sun rays at t =
0, the array must be in the plane Y. Z.. Physically, the
conclusion 6,4 = +rt and 0;, = 0 is seen to be valid in Fig. 2 for
the parameters v =x/2, Qy=0,andi=Aatt=0.

Example 2: S0y = 0, and arbitrary v
For QN =0, Eq. (7) and Eq. (8) yield

=V

¢ (A-i) sV’ 81, = sin"! [ sinv sin (A-i) ]

(10a,b)

010 = tan™!

Eq. (10b) states that, inasmuch as (A-1) is fixed, the angle 8,
will change periodically as the earth moves around the sun in
one year, 0 < v < 2x; the extremes of 8], will be (A-i) when v
=n/2, and (i-A) when v = 37t/2. This is illustrated in Fig. 3 for
i = 28.5° and 43.5°. Now considering the satellite orbit in the
ecliptic plane (A=i), Eqs. (10) simplify and, consistent with
Example 1, furnish

Bio=-n/2-v (11a)
01y() = wot - (n/2 +v) (11b)

For v=0, +y array’s rotation 61¢ = -n/2 about the axis Y,
measured from its datum orientation in the Y Z. plane, is
illustrated in Fig. 2. Also, for QN = 0 and i = 28.5° the linear
relationship (11a) is seen to be true in Fig. 3.

Zye e
SPACECRAFT ORBIT
PARAMETERS:
Q N-O, i= & ; CIRCULAR EARTH
(vm n/2)
Yve YvE
SATELLITE X, EXAMPLE 1
0. twd
o 7
a Qo= T
(ARRAY
e FACING
B = -/ 2 THE SUN)

(ARRAY FACING
THE SUN)

Fig. 2. +y Solar Array Orientations at t=0 for Examples 1 and 2
(VE = Vernal Equinox)
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Table 1. Extrema of the tilt angle 8},

Earth’s Position Ascending Node Angle Extreme
in the of the Spacecraft's Orbit Value

Ecliptic Plane (v,deg) {QAN, deg) ol 0y,
90° 0° i
90° 180 ° A+i
-90° (or 270°) 0° i-A
-80° (or 270°) 180 °© —A~i

Example 3: Arbitrary $2yand v

Fig. 3 illustrates the variation of 619 and 8,7 as a function
of the earth’s position in the ecliptic plane ( 0 < v < 2r ) for i
= 28.5° and 43.5° and eleven values of the ascending node angle
QN. The apparent discontinuities in 819 curves at *x are
inconsequential because the angle 819 has a range of 27 and +x
= —n. Furthermore, from Eq. (8), we infer that

for Qn = ®: B,z = sin'! [ s (A+i) sv ] (12)

which is a counterpart of Eq. (10b) in Example 2. Clearly, the
extremes of 0, are
M @V =mr/2
812 = {-(m) @v=13n/2 (13)

These, as well as the sinusoidal variation of the angle 617
versus v, are illustrated in Fig. 3. Also, see Table 1.

-Y Array Commands

Regarding the —y-array, because the angles 82y and 8, are
defined about the axes Y70 and Zyg which are respectively
opposite to the +y-array axes Yjg and Zjg, it is clear that for
keeping the array normal to the sun-rays

82y = b1y (14a)
8 = -0, (14b)

Recalling Eq. (4), the desired 82y(t) will therefore be

B2y(t) = —wot - 810 (15)

™ T T T T g T 1
0 15 90 138 180 225 270 BIRT 1)

T T T T 7
2 45 80 139 180 225 270 TS 36D
v {DEG)

Fig. 3. Initial Angle 8109 about the pitch axis yo and inclination angle 8, about the short edge Z;-axis of +y array versus angle v

It is instructive to compare the commands developed above
with those developed by McElvain! and Kalweit2.

3. Solar Radiation Torque
Radiation Torque on a Solar Array

For momentum accumulation study, the radiation torque g
at the spacecraft mass center is required. Referring to Fig. 1, let
bjG= 1,2) be the vector from the reference origin O to the solar
array hinge O; (j = 1,2), and Pp; (j = 1,2) the vector from the

hinge O; to the pressure (or geometric) center of the array.
Additionally, let . be the vector from the reference origin to the
vehicle mass center. Denote the moment arm vector of the solar
radiation force on the j-array as ¢p;. Then,

Cpj = L+ b+ Co; Ppj (=12 (16)
where Co; is the transformation matrix defined by Eq. (1) and
Eq. (2) for j=1.2. Following Reference 5, Section 8.3, the

radiation torque experienced by a spacecraft about its mass center
owing to the sun rays off-normal to the jth-array, is

_g] = pAJ o SPJ* { (0, + Crp) S$+2 (omﬂ + O C(XJ) nAj] (=12)
amn

where p denotes the radiation pressure on a totally absorbing
normal surface, A; is the array's area, c@; = COs Q; and o is the
angle between the inward normal unit vector DA and the sun
vector S, O, is the absorptivity coefficient of the surface under
consideration, 64 is the diffused reflectivity coefficient, and Oy
the specular reflectivity coefficient. The notation x in Eq. (17)
transforms a column vector to a 3x3 skew-symmetric matrix, as
defined by Eq. (13), Section B.2, Reference 5.

Array Normal to the Sun
When the sun rays are normal to the j'™ array, co; = 0, and
na;j = S and Eq. (17) simplifies to

HH/VT-032



8j = PAjOA Ly S (18)
where
OA = 1+ Opg + 20rd/3 (19)

The three components of the radiation torque, Eq. (18), on the
spacecraft in an arbitrary orbit, with the array normal to the sun,
will now be shown explicitly. For concreteness, we assume that
the spacecraft mission is such that the power and thermal
requirements allow the +y-array to be normal to the sun. To
express the vector ¢y} component-wise, note that the length of
the A-frame along the pitch axis is ‘a’ (Fig. 1), and the rotation
81, takes place about the Zq-axis of the array without involving
the A-frame. Because in the XY Z) frame, the pressure center
of the array is at a distance £/2 along the yj-axis from the

transverse edge of the array (Fig. 1), the vector Cp F_’pl in Eq.
(16) can be calculated easily using Eq. (1). Furthermore, we

assume that when the arrays are in the ypzg plane (81, =0 =
07,), the vectors . and by are in that ptane (Fig. 1). Therefore,

in the LVLH frame %°¢:

L+bi = [0 -reytbiy —rez+bi 1T (20)

The vector ¢p1, Eq. (16), will therefore be

-b 5917, Cely
Cp1 = “Tey+ bly +a+b i, . baL/2
-Tez + blz +b 5911 Sely
@1
For analytical convenience, define
b1y® = -1y +biy +a b122 = 12+ b1z (22

Using (21), (22)in Eq. (18) the following components of the

torque g, inthe LVLH frame are obtained:
Fe

b?z 0, + (b «v—b?y €0,;) 50,y

£, =PA0A brcO1z By 23)

(b +b;°y0911) Cely

While the angle 01y(t) varies linearly at the rate ®,, changing
by 2% over one orbital period, the angle 6, is virtually
constant in that period. Eq. (23) therefore indicates that, in the
LVLH frame, the roil (x-) torque comprises a constant and a
cyclic torque, the pitch and yaw torques are cyclic, and the cyclic
yaw torque is in quadrature with the cyclic component of the
roll torque. (Also, see Ref. 4.)

~Y-Array Off-Normal To The Sun
When the spacecraft at hand has two arrays, power and
thermal requirements might dictate one array to be normal to the

sun rays and the other array off-normal. Fig. 4 depicts one such
posture for the spacecraft in Fig. 1, with +Y-array normal and -
Y -array off-normal.

To keep the mass center of the —y-array on the rotational
axis yq, the A-frame is tumed about the z3-axis by an angle
07;.a (a negative 82, 5 is shown in Fig. 4); also, the array’s
normal-to-the-sun orientation angle is denoted 92, whereas the
off-normal orientation angle is denoted 09;’. Under these
circumstances, the transformation matrix Co?, defined by Eq.
(2), is altered to Cg2,A for the A-frame replacing 687, with
82;.2, and to Coo” for the —y-array substituting 82, for 62;.

Thus the pressure center vector Coz Pp2 in Eq. (16) is revised

Lo
-$6827,a CO2y -s02;" cBay
CDZ EPZ == a —cezz‘a +b —6921'
—$622,2 $62y -s82;" 562y
(29)

To evaluaie the torque g; (j=2), we note that the vector -Lc +
by for the —y-array in the frame F¢ is, following Eq. (20)

“Le+ba= [0 1oy + byy ez +b2, 1T (29)

where, to symmetrize the mass distribution
b2z = b1z (26)

Using the equation 82y = -01y and Eqs. (24), (25), and (26), the
VECLOr pj (j = 2), Eq. (16), is found to be

b2y = -biy

—‘bs Ce[y 970 Cplx gC
2 = ey b1y - be = | %P2y Q7
~g +b1z +bssO1y Cp2z
where the lengths b and by are defined as
be = acByza +bchby;
bs = asByz, + bsOy; (28)

The vector S and the inward normal na for the —y-array in
the off-normal frame F2A: X545 Yoa Z2a (Fig. 4) are

sFP -ty s 0T . T M=1-1 0 0T @
where 8, is the off-normal angle, defined by

820 = Og0 — 62" 30)

and equal to the angle o between the vectors § and na for the
array. Therefore the vector [ « ] in (17) the spacecraft frame is
found to be
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Fig. 4. A Spacecraft With +Y Array Normal to the Sun and -Y
Array Off-Normal

[(6a +0r) S +2 (0153 + Grs canyna 1 F =
[-Ocx €82y  Ocy  —Ocx B2y T 31
where
Ocx = Ox2 B2, — Oy2 8827
Gcy = Ox2 882, "+ oy cOy;’
Oxa = (1 +6,) By, + 2014/3
Oyz= (1 ~05) 88y, (32

Using the vector ¢p3 in Eq. (27) and the vector Eq. (31) the
torque g, is found to be

a
£y =pAycdy,

- ("rcz + bll) ocy - [bs ch + (rcy + bly + bc) Cex }Sely
Gcx JcB1y (33)
- [bs Gey + (l’cy + b]y +be) Gex }Cely

~ (~Tz + b1z)

which exhibits the same attributes as those exhibited by g, in
Eq. (23).

Example | Off-Normal Angle 8,; = 0 and A-Frame Angle 8, , = 0
In this circumstance, the +y- and -y-array become parallel
because now 87, = —01,, and the torque _ngc, Eq. (33),
simplifies to
bg;se 1z +(b+ b% cBy,) 50y

L2
-b,, cBiz2¢B1y

8% =pajoa (34)

(-b + b?y ch),) Oy
where

b2y@ = —T¢y -byy -a b21® = blze (35)

Exampie 2. Both Arrays Normal to the Sun: Resultant Torque
Adding Eq. (34) to Eq. (23), and assuming that the arrays
are identical in geometry as well as in optical surface properties

so that A, = A} = Ay, the resultant torque § equal o —gl +
£5) is found to be
(—Tez + b12) Selz —Tey Celz Sely

g‘:‘;C = 2pAs Ca

(rez — byy) Celzcely (36)

—Tcy cB1z¢01y

-

Mass asymmetries in the spacecraft generate the components rey
and r.,; how each component contributes to the radiation torque
on the spacecraft is seen clearly in Eq. (36). We also observe
that, because the two arrays are parallel and geometrically
identical, the A-frame length a and the array’s half-length b do
not contribute to the total torque, only the hinge location
referenced from the vehicle mass center matters.

Example 3: +y-Array Normal and -y-Array Off-Normal: Resultans
Torque

The resultant torque _g_?c is now obtained by adding Eq.
(23) with Eq. (33). To build a simple expression for Egc, we
observe that, in the F € frame, ignoring the variation in the

angle 01, over one orbit period, the constant part gc of the x-
torque (roll torque) is found 1o be

gc 8 pAs blz69 oA $817 - Ocy ¢822) (37a)

and the amplitude g, of the sinusoidally varying part g, 561y of
the x-torque is

a8 PAs (0a (b + bly@ 01,) - €82z [bs Gy +

(rey + bry + be) Ocx] (37v)

The z-component (yaw torque) has no constant part, and its
sinusoidal variation is in quadrature with the roll component.
Lastly, the y-component (pitch torque) also varies sinusoidally,
with its amplitude gp equal to

gb = —PAs blze [0A O]z + Ocx ¢822] (37c)
Thus, the total radiation torque g Fe acting on the spacecraft at
its mass center, in the spacecraft frame, is

Bct Ea Sely
ggc = Eb Cely (37d)
ga Cely

The constant roll torque g in the rotating frame & © becomes a
periodic torque in the orbit plane in a non-rotating frame;
conversely, the periodic roll-yaw torque in & ¢ becomes a
constant torque in the orbit plane in an inertial frame.
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Meanwhile, the periodic pitch torque remains periodic even in a
non-rotating frame because the rotation wot takes place about
the pitch axis.
Radiation Torque on Spacecraft Bus

Usually the surface area of spacecraft bus is much smaller
than that of the deployed solar arrays, and therefore the radiaton
torque caused by the bus is an order of magnitude smaller than
that caused by the arrays. For this reason and to conserve space
the analytical details of derivation of the radiation torque on a
bus will not be given here.
Torque On An Array Shadowed By the Spacecraft Bus

Fig. S portrays a spacecraft with a cylindrical bus and a
solar array, the bus casting a shadow on the array. The lit semi-
cylindrical surface is ABC. The shadow boundary on the array
may utmost consist of three segments: an arc cast by the lit
end-face of the cylinder and two straight lines, enclosing the arc,
cast by the boundary rulings at A and C. The shadow in Fig. 5,
though, has two segments only because the shadow of the
ruling at A falls off the array. The shadow boundary is
determined as follows

It may be clear that at any time only one array at the

most will be shadowed. Knowing the angle B between the sun-
ray unit vector S and nadir unit vector ¢3, we first determine
which end-face is lit:

if B < /2, the earth-pointing end-face is dark, and the
opposite end-face 1s lit;

if B > m/2,the earth-pointing end-face is lit, and the
opposite end-face is dark

and the lit semi-cylindrical surface is then identified. Next, let
be the vector from the reference origin O to any point P on the
edge of the fully-lit face of the bus or along the two boundary
rulings of the lit semi-cylinder. The vector from the hinge O; of

jh array (j = 1,2) 1o the point P is then -bj+ r. The two
components of this vector in the array plane yjzj, which is not
necessarily normal to the sun, are

(-bj+D.J; and  (bj+D.k (38)

where _j_j and k; are the unit vectors along yj- and Zj-aXiS of the
array, respectively. If these components fall on the array, that
is,

aS(—hj+L).__ij (39a)
—-w/2S(—hj+r_).k_jSW/2 G=12) (39b)

where w is the width of the array along the z; axis, then the
array j is clearly shadowed. In that event, as the vector ¢ moves
along the edge of the lit end-face and the boundary rulings, the
above two components will delineate the shadow boundary.

The radiation torque due to the array is still given by Eq.
(17). The area A represents the lit area of the array, and the

vector _ij in the moment arm ¢, Eq. (16), is the vector from
Oj to the instantaneous center of pressure of the shadowed array.

The instantaneous lit area and the vector ij are calculated
numerically.
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Fig. 6. Comparison of the total radiation torque on the
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IHlustration

For parameters not recorded here because of space
limitations, Fig. 6 furnishes total radiation torque (two arrays
plus cylinder) with and without considering the shadow of the
bus on the array, for =0 and both arrays normal to the sun
rays. When the shadow is ignored, we observe that, in
conformance with Eq. (36), the yaw torque is zero and the roll
torque a constant over a few orbits. Slight oscillations in the
roll torque are present because of the cylindrical bus. The
variation of the pitch torque in Fig. 6 conforms with the y-
component of the solar radiation torque in Eq. (36). Regarding
the effect of shadow on the array, we observe that while the
shadow does not alter y-torque, the trough of the x-torque
plummets from -0.29E-3 ft.Ib to -0.38E-3 ft.Ib during the
shadow period. A small (0.1E-4 ft.Ib amplitude) cyclic z-torque
also arises during the shadow period. For the parameters under
consideration, it turns out that the —y-array is shadowed, +y-
array is not. Traversal of the cylinder's shadow on the —y-array
is shown in Fig. 7. The growth of the shadow area on the -y-
array is shown in Fig. 8 for three parametric sets, including the
set for Fig. 6. Fig. 8a shows that, for example, when 07; = -
43.5°, the maximum shadow area equals 88 sq.ft [(shadow area)
/ (array area) = 88/202.85 = (0.43] and the array remains partially
shadowed for nearly 6 hours (one-fourth of the orbital period).
We nonetheless also observe that the shadow occupies 43% area
of one array only briefly (several minutes), occupying
progressively smaller area before and after the maximum shadow
epoch. As the shadow traverses, the pressure center of the lit
portion travels also; the loci of the instantaneous pressure
center, from the moment the shadow enters the array till the
moment it leaves, are shown in Fig. 8b for three sets of
parameters. As expected, these loci are closed curves, and the
bigger the angle 182l the wider the loci. The shadows occur
around different orbit angles wqt for different sets of orbital
parameters v and QN (even if the orbit inclination i is the same
for these orbits). For plotting convenience, however, the
maximum shadow epoch is shown to be the same (t = 18 hrs)
in Fig. 8a for all three sets of parameters. In the preceding
results, the center of mass vector [ is zero. However, as the
arrays orientations change relative to the spacecraft bus while
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Fig. 8. (A) Shadow area on the —y-array versus time; (B) Locus
of the pressure center of the —y-array as shadow travels on the
array; orbital parameters for 62, = —43.5° the same as those in
Fig.7; for 82, = -30°, the parameters are v = 30°and Qp =
140°; for 8, = -22°, v =80° 2y =80° and i = 20°

tracking the sun, 1, may vary depending on the arrays'
arrangement. In the case at hand, this variation is found to be
small, and it was not ignored in the computations.

The preceding results show that the spacecraft bus shadow on
the array does not change radiation torque significantly. Also,
based on the results not shown here due to space limitations and
as stated before, the radiation torque on the bus is found to be an
order of magnitude less than, and so negligible compared to,
that on the arrays

4. Momentum Accumulation Due to Solar
Radiation Torque
In the following analysis we will determine the momentum
accumulation due to the arrays’ torque only. It is instructive to
compare the following development with that by McElvain!.

Short Term Accumulation

Let Hy be the inertial angular momentum vector of the
earth-pointing spacecraft under consideration. If Hx, Hy, H; are
the components of Hy in the body-fixed frame, then, in the
presence of the radiation torque, (37d), they will be governed by
the following three equations, expressed in the F°:
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Hx - wg Hz = Ec+ 8Oy (40a)
H; + wo Hx = 8acB1y (40c)

As is well known, the roll (Hx) and yaw (H,) momentums are
gyrically coupled, whereas the pitch momentum (Hy) is
independent of roll and yaw. Examining the definitions of g,,
gb, & in Egs. (37 a, b, ¢), we observe that they are functions
of, among other things, the inclination angle 81, and the off-
normal angle 8;;. Because these angles depend on the earth’s
motion around the sun (the angle v), they are held constant in
flight over a few days, and therefore, within this period, the
quantities ga, b, 8c can be regarded as constant. Moreover,
assuming that time t can be measured such that 81y (t=0) = 0,
instead of 89 according to Eq. (7), 81y (1) in Eq. (40) can be
replaced with wgt. With these two assumptions, Eq. (40a) and
(40c) can be integrated together, yielding (i2 = -1)

Hy + iHg = —i (gc/00) (1-67100Y + i 1 g5 e=i00L  (41)

The integration of Eq. (40b), on the other hand, yields the pitch
momentum Hy as

Hy (1) = (gp/wo) sin 0ot + Hyo 42)
Because a constant torque gc in the orbiting frame is a cyclic
torque in the inertial frame, whereas a cyclic torque g, in the
orbit frame is a constant torque in the inertial frame, it is
natural to find in Eq. (41) a cyclic variation in (Hy + iHg)
owing to gc and a secular growth owing to g,. At any arbitrary
instant, the magnitude of the secular term in Hy+iH; is tg,,
showing a linear growth in the spacecraft momentum in the
roll-yaw plane. The pitch momentum Hy (t), Eq. (42), varies
cyclically, with the amplitude equal to gp/wo. The constant
Hyp in Eq. (42) equals Hy(0) and it embodies the spacecraft’s y-
momentum arising from its once-per-orbit equilibrium rotation.

Yearly Accumulation

It was just shown that the secular momentum in the roll-
yaw plane at the end of one orbit (gt = 2n) is (Hy + iHp =i
21 ga/wq, where the coefficient gy, Eq. (37b), is a function of
the solar array’s inclination angle 6, for an array normal to the
sun, and of the inclination angles 8’7, and off-normal angle &7,
for an off-normal array. Fig. 3 shows that the angle 61 (or 62;
which is equal to —8,,) varies as a function of the angle v (the
earth’s motion around the sun); therefore in order to calculate
the yearly momentum accumulation, this variation must be
considered. To separate the linearly varying angle v(t), 0<v<2r,
from other constant orbital elements A, QN, and i in the
definition of 812, Eq. (8d) is rewritten thus:

81, = sin~! [ (si SQN) cv + (-si cQN ch +cisA)sv] &

sin~! [Ag sin (vg + V1)) 3)

with the amplitude Ag and the phase angle vq defined by:

11

Ag=(AZ+AD2ST,
Ac = —Si CQN CA +ci sA

vo=tan [AJA]  (44)

Ag =i sQN 45)
Strictly speaking, because of orbit regression the ascending node
angle Q is not constant, but this variation is ignored here.

Spacecraft With +Y-Array Only,
Array Normal to the Sun

When the +y-array is normal to the sun, the coefficient g,
given by Eq. (37b) simplifies to

e
ga=PAsOa (b+ b1y ¢B17) (46)
ignoring the second term in [+] in Eq. (37b) because it pertains
to the —y-array. The magnitude of the secular momentum
accumulated at any instant t then becomes
IHy + iHyl = pAsoa (b+b1y®cOy)t @n
The yearly momentum is obtained by integrating (47) over the
annual variation of the angle 81;. Let ny be the current orbit
under consideration:
ny = Y10, 102 2n/wo (48)
where 1¢ is spacecraft orbit period, and let Ny be the total
number of spacecraft orbits in one year. Then the yearly
accumulation will be

Ny
<]
Hyr = (pAs 6A T0) I (b+byy cB1z) dny
0

49

Because -x/2 < 01 < n/2, cB1; will always be positive. With
the aid of Eq. (43) and recalling that b is constant (= £/2), and
treating blyQ. Eq. (22a), as constant, Eq. (49) transforms to

Ny
Hyy = (pAs OA To) [bNy + by [ (1-Ag? sin?
0

(vo + Vo ny)} 2 dny) (50)

(The assumption blye a constant may not be always valid,

because the quantity rcy involved in the definition of blye) may
change due to 01, but this change can be minimized by
keeping the array's mass center on the axis of rotation.) Now,
while ny changes from O to Ny, the argument of sin? in Eq.
(50) varies from vg to vo+2m; therefore, the integral in (50) is
an elliptic integral of the second kind. Measuring the time t
such that the phase angle vp = 0 and capitalizing on the
symmetry properties of the elliptic integral at hand, Hy, after
integration is found to be

Hy; = (pAs GA T0) BNy + 4 01y PAT0) E (172, A0))  (51)

where E(r/2, Ag) is a complete elliptic integral given by the
series:
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Al _[(2:\—1)!!]2

28 n!

5 |
(52)

{E (n/2, Ay) = (W2) {1—2—12-A(2,—

Becasue the number of the spacecraft orbits in one year is

Ny = 2n/(Vg) (53)
the yearly momentum accumulation Hyy simplifies to
Hyr =Ny 70 pAs GA [+ b1y® (1-Ag222- )] (54)

In the series (52) or (54), as many terms are retained as are
necessary to evaluate the sum up to a desired accuracy.

Spacecraft With +Y and -Y Arrays:

a) Both Arrays Normal to the Sun
The coefficient g4, Eq. (37b), now simplifies to
8a = —2pAs OA Icy €0y, (55)
This is corroborated by the coefficient of s61y in the first
element of the vector equation (36). Comparing (55) with (46),
the yearly momentum accumulation in the present case can be
written down following Eq. (54):

Hyr = Ny 70 pAs O [ —2rcy (1- Ag%/22 = )] (56)

b) +Y-Array Normal, -Y-Array Off-Normal 1o the Sun

In this case, the coefficient g, is given by the full-length
equation (37b). The definition of the coefficients b, bs [Eq.
(28)], and ocx, Ocy [Eq. (32] reveal the presence of the products
of the trigonometric functions of the angles 8”2z and 87, 5. The
analysis therefore seems intractable, and developing a closed-
form expression for Hy infeasible; consequently, numerical
integration of the equation IHy + iH;| =t g5 over one year
seems inevitable.

Yearly Propellant Consumption

Annual propellant consumption, Wp, should not be based
on the momentum accumulation over one orbit and treating
that constant for entire year, for the daily momentum varies
significantly over one year (illustrated later in Fig. 10). Instead,
knowing Hy; from Eq. (54), Eq. (56), or otherwise, and
knowing the specific impulse Isp of the propellant under
consideration and moment arm Ly of the thrusters from the
vehicle mass center, Wy, is obtained from

Wp = Hyr / (Isp LJ) (57

Illustrations
Example |. Spacecraft With Two Arrays: Momentum Accumulation
Over Three Orbits

Fig. 9 illustrates momentum accumulation in the roll-yaw
plane, Eq. (41), with the orbit angle Wyt as parameter. In
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Fig. 9. Momentum accumulation in roll-yaw plane, due to the
two arrays only: +Y array normal o the sun, 8], = 45° -Y
array off-normal, 6," = 25° &, = 20°, -Y array A-frame angle
922,a =-37°

particular, it applies to the spacecraft configuration shown in
Fig. 4, with +y-array normal to the sun and -y-array off-normal
at an angle 3,,. Fig. 9 shows the linear, radial growth of (Hy +
iH,)—the term itg, e~'®0! in Eq. (41)—superimposed upon a
cyclic variation with an amplitude of g¢/wy.

Example 2. Momentum Accumulation As a Function of Earth’s
Position in the Ecliptic Plane

In order to obtain complete dependence of the daily
momentum accumulation over a one year period, we next
illustrate in Fig. 10 the roll-yaw momentum at wgt = 2% and
the pitch momentum amplitude gyp/wg as a function of the
angle v: 0 < v <2n, with the off-normal angle 83, as a
parameter. Figs. 10a and 10b show that, for off-normal angle
822 = 0, the roll-yaw and pitch momentum amplitude varies
periodically with v, with half-year period; the corresponding
ratio Hy / IHx + iH,| remains constant for entire year. When the
off-normal angle 89, of the —y-array is introduced, the half-
yearly periodic variation of the roll-yaw momentum disappears
and, instead, it begins to vary asymmetrically with v. Also,
the peaks and valleys of the roll-yaw momentum grow further
apart as 87, increases. The half-year periodic variation of the
pitch momentum amplitude alters little with the angle &,,. Fig.
10c illustrates the ratio Hy / IHx + iH!; the variations in this
ratio with v become more pronounced as 89, increases. This
ratio is of interest because it helps decide the cant angle of the
reaction wheel configurations considered in the next section.

Example 3. Yearly Momentum Accumulation

When the off-normal angle 8,, equals zero (that is, when
both arrays are normal to the sun) the yearly momentum can be
obtained analytically using Eq. (56), and when §,, # 0, the
yearly momentum is obtained by numerical integration of the
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area under the curves {H, + iH,l in Fig. 10a for the entire range
0 < v < 2r. Fig. 11 depicts the yearly momentum against 8,,
for the range 0 < 8, < 20° for different orbit inclination angles,
keeping Qy at 170°. For 8,, = 0, the analytic prediction was
compared and found identical with the numerical results. The
number of terms that must be retained in the infinite series in
Eq. (56) increases with the orbit inclination i, and yearly
momentum diminishes a little, The yearly momentum,
however, increases significantly with the off-normal angle &,,,
as seen in Fig. 11.

Ga=0.75, Org=0.25, Grg=0.0, Agy = 202.85 ft2
i =28.5° Qn=170.0, A =23.5°
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Fig. 10. Variation of roll-yaw and pitch momentum with the
earth’s position (the angle v) in the ecliptic plane; y-array
normal to the sun, -y-array off-normal at an angle 8, and its
A-frame at an angle 63, 4, A = 23.44°, orbit ascending node
angle $Qy = 170°, and inclination angle i = 28 5°
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Fig. 11. Annual roll-yaw momentum versus off-normal angle
of —y-array; +y-array always normal o the sun; Sy =170°

5. Reaction Wheel Sizing and Configuration
Optimization

In Section 4, we observed that the momentum along the
roll and yaw axes are coupled. Depending on the initial
conditions, the secular momentum build-up tg, can exceed the
capacity of the wheels either about the roll-axis, yaw-axis, or
any other direction in the roll-yaw plane. Therefore, for the
design purposes, the desired momentum capacity in the roll-yaw
plane is the same in all directions. In contrast, the pitch
momentum caused by the radiation torque is cyclic, with the
amplitude equal to (gp/wp). Hence, the pitch and roll-yaw
momentum requirements leads to the well-known right circular
cylinder momentum requirement for designing a wheel
configuration, with cylinder axis along the pitch axis. On the
other hand, the reaction wheels are also required to produce
certain peak control torque about each of the three spacecraft
axes. The torque requirements therefore form a rectangular
parallelepiped. Both the momentum and the torque requirements
can be met, in principle, using three wheels (not necessarily an
orthogonal set); but for the sake of redundancy, four or more are
often employed. In the following subsections, four-, six-, and
three-wheel configurations are analyzed, two arrangements of the
wheels and one-wheel failure are considered for each
configuration.

To visualize the wheel configuration most easily, first place
the spin axes of all the wheels in the roll-yaw plane, perhaps
radially symmetrically along the roll and yaw axes or otherwise,
and then cant all spin axes, equally or unequally depending on
the design, towards the pitch axis or its opposite. When the
wheels are not along the spacecraft axes, a transformation
matrix Chw is required to transform the wheel momentum
vector Hww along the wheel axes to the total wheel momentum
Hupw along the spacecraft axes:

Hpw = Cobw Hww (58)
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When the number of wheels, ny, is more than 3, the matrix
Chw is rectangular, 3xny, and its pseudo-inverse Cpw'

waT = waT (gbw waT)-l (59)
is required for the inverse ransformation of (58):
Hww = C.bw+ Hpw (60)

The above two transformation matrices are useful also for
transforming the desired control torque T. (3x1) about the
spacecraft axes to the desired rate of change of the wheel angular

momentum vector Hyw (nw x 1);

Hww=-Cow' I ©1

To determine the optimum cant angle(s) with the roll-yaw
plane, it is logical to impose the requirement that, for a desired
momentum vector capacity Hpyw in spacecraft axes, the norm of
the wheel momentum vector Hww be the least so as to

minimize the cost and weight of the wheels. One suitable norm
of the vector Hww is its Euclidean norm Il Hy,w I defined by

Nw

172
Il How !l = {Z va {l
i=1

where Hy; (i = 1, ..., ny) are the elements of the vector Hyw-.
The minimization of | Hy !l also results in minimum power
consumption by the wheels for controlling the spacecraft, as
shown below.

(62)

Let wwi(0) be the initial speed of the wheel i, and
Wwi(1) the instantaneous speed while the wheel is acted upon by
an electric motor, changing the wheel's momentum Hy,; at the

rate Hyi(t). Then

wi() = owi(®) + L~! [ Fy; (@) dt (63)

where Iy, equals wheel’s moment of inertia about the spin-axis.

For a constant }.lwi, the instantaneous power Py; consumed by
the wheel i is given by,

Pui= ! Hui | 10wi(0) + Iy~! Hu; t| (64)

where absolute values are taken to ensure that the power Py is

positive for both signs of Hy; (1) and wy; (t).To determine the
worst power consumption by the wheel assembly, we assume

that Wwi(0) has the same sign as that of I:lwi. Furthermore,
assuming that wyi(0) is the same for all wheels, the total
power Py, consumed by the ny, wheels will be

nw

Po =l 0w(0) 1 3 | Huwi |+t Iy-! Wy 112

i=1

(65)

Thus, we see that, ignoring the linear term, minimization of

power consumption leads to the minimization of the norm |l

*
Hww .

The vectors Hyw and Hy, are related, respectively, to the
required momentum capacity Hypy and the control torque
capacity T, through the same pseudo-inverse matrix Cpyt.

Therefore, the minimization of both Hyw and Hyw yields the
same optimum cant angle if the components of Hy,y, and T, are
proportional. This condition, however, is not always obeyed;
for instance, in the presence of radiation torque, the desired roll
and yaw momentum requirements are the same, but the desired
roll and yaw torque requirements may be different because the
roll and yaw errors might be controlled with controllers of
different bandwidths, and the corresponding moments of inertia
might be quite different. As a different example, the roll and
yaw torques limits could be the same to facilitate momentum
dumping with thrusters. The need for deliberation is thus
evident.

Four-Wheel Pyramid Configurations

One possible arrangement of four wheels is shown in Fig. 12.
The angle between two adjacent wheels is 90°, and they all are
equally canted toward the —y axis by an angle 1| measured from
the roll-yaw plane.When the cant angle n and the angle y in the
roll-yaw plane are both zero, the momentum h; of the wheel 1
is along the z-axis, hy along the x-axis, h3 opposite to hj, and
h4 opposite to hj. The angle v is introduced so that the wheel
torque can contribute, if desired, to all three axes and not just to
roll and pitch or yaw and pitch. The corresponding rectangular
matrix Cpy i

CNsY cmcy -Ccmsy -cncy
Cow=|-sn - ~sm -sM (66)
CMCY -cnsy —CNCY  cnsy
whose pseudo-inverse, Eq. (59), is found to be
sy/2em -1/4sm cy/2cq
+ _| <¥2em  -1/4sm -sy/2cqm
Cow' = -s¥2cm -1/4smt —¢v/2cem ©7n
-cY2cn  -1/4sn $Y/2¢cn

Let Hy, Hy, H, be the desired momentum capacity of the
reaction wheels about the roll-, piich-, and yaw-axis of the
spacecraft. These three components disperse along the four
wheel axes as follows, using Eqs. (60) and (67):

( H,sy + Hyev)/2cm - Hy/dsn
( Heey - Hpsy)/2cm - Hy/4sm
(~H,sy - Hev)/2en - H Jdsn
(-H,cy + H;sv)/2cn - Hy/4sn

Huww = (68)

Let, Tx, Ty, T, be the desired maximum control torques about
the x-, y-, and z-axis of the spacecraft. The maximum rate of
change of the wheel angular momentum about wheel axes is
then, according to Egs. (61) and (67)
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Fig. 12. Four-Wheel Configuration

ha

(-T,sy- T,cv)/2cn + Ty/dsn
o | (-Teer+ TsW/2en + T,/4sn
Huw = (Txsy+ Tiev)2en + T,/dsn
( T.cy - T,sv)/2cm + Ty/4sm

(69

If Hy, Hy, H; are the desired momentum capacity of the
reaction wheels about the roll, pitch, and yaw axis of the
spacecraft, the 4x1 vector Hyy is calculated analogously. Based

on the definition (62), the norms | Hyw ! and Il ﬁww I are then
found to be:

Il Huw I? = (He? + H,2) / 2c20) + Hy2/ (4s2n)  (70)

I Hww I = (T2 + TD) / 22) + T2/ @as™n) - (7))
which are independent of the angle y because the angle between
two adjacent wheels is 90°. Comparing the two norms, it is
clear that if (Hy, Hy, Hy) and (Tx, Ty, T,) are proportional,the
minimization of one is the minimization of the other. The
optimum cant angle n* is found to be

tan 0% = Hy2/2(Hx2 + H;2) = Ty22(Tx2 + T2 (72)
which may be rewritten in a more revealing form:

Tx2/ Ty? + T3/ Ty? = 1/(2an* n*) 73)

which is the equation of a circle in the plane (Tx/ Ty,

T4/ Ty) and the radius of the circle equals 1/(V2 tan2 1*). Eq.
(73) states that as the torque requirements about x- and z-axis
diminish, the radius of the circle shrinks and the optimum cant
angie n* increases. This is exemplified in Fig.13 where Eq.
(73) 1s plotted for n* = 25°, 30°, ..., 60°.

15

The norm |l flww Il can be made dimension-free by dividing Eq.
(71) with Ty2. This dimension-free right side of Eq. (71) is
plotted in Fig. 14 as a function of 1 for a given (Te? +
T,%)/Ty2. The minimum value of the norm occurs at the
optimum cant angle N*, and that minimum norm is found to be

Il Bww 12 min/ Ty? = [ V2 (Oxy2 + 0yDV2 4 1128 (79)
where the torque ratios Oxy and Gy are defined as

Table 2 furnishes optimum cant angle n* for several desired
torque ratios; it also demonstrates that, for example, n* = 35.26
as long as Oyy? + 0,y 2 = 2, regardless of the individual values
of oxy and Gy.

To determine the torque (or momentum) capacity of the
wheels to produce the desired maximum torques (or

momentums) along the spacecraft axes, we again consider ﬁww,
Eq. (69). Because Ty, Ty, T are only three independent torque

requirements, the four elements of fiww are not all independent.
Indeed, they are constrained by a relationship that is divulged
from

Huw = Cow’ Cow Hwwr (76)

(Tx/Ty)2 + (Tz/ Ty = 1/(2TAN4n)

n=25°

TZ/TY

Fig. 13. Dependence of minimum-power cant angle on desired
torque ratios
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Table 2. Examples of dependence of optimum cant angle on the

desired torque ratios(Cxy and Ozy )

Optimum Example
Cant Ratios
(Tu/Ty)2 + (TyTy)2 | Angle TyiTy Ty
0.5 45° 05 0.5
! 40.06° 12 12
1 i
2 35.26° 0 V2
N 0
3 30.73° V2 V2
8 26.56° 2 2

Recalling (66) and (67), Eq. (76) yields four identical equations
stating

Hw) +Hw3 = Hw2 + Hyg an

The wheel momentums observe a similar relationship.

Because of (77) and because of the nature of decomposition of
the three desired torques Ty, Ty, T along the four wheel axes,
Eq. (69), it may be intuitively clear that the magnitude of each

element in (69) will not simultaneously reach I—.Iw'max——t.he
maximum achievable rate of change of wheel’s angular
momentum. Therefore, recalling the definition (62)

Il B 12 < 4Hy 2 (78)

When the cant angle is optimum, the norm |} }:.[ww Il is related
to the specified torques Ty, Ty, T, according to Eq. (74).
Therefore, in view of (78)

(V2 (T2 + 92 4 Ty 14 < Fy o (79)

By way of illustration, if the torque requirements about the three
axes are all equal (Ty = Ty = T,), the inequality (79) yields

Huw.mx > 3Tx/4 (80)

Considering that there are four wheels, each of capacity l:lw_mx ,
for controlling three axes of the spacecraft each requiring the
torque Ty, the inequality (80) is perhaps a natural result, but it

does not reveal just how much Hy, mx must at last be, to size
the wheel. For that, the Euclidean norm is not helpful and we
must focus on Eq. (69) itself, as illustrated in the following two
illustrations.

Wheels Contributing to Roll and Pich or Yaw and Pitch Only

In Fig. 12, when v = 0 or 90°, each wheel contributes to
either roll and pitch or yaw and pitch axes only. Regardless of
Y. the optimum cant angle for equal torque and momentum
requirements satisfies, according to Eq. (72):

n* =3526° 1@ann* = 1/\5, sinn* = 1/N3, cosn* = V273
(81)

Substituting Ty = Ty = T, and sn* and cn* from (81) in (69),
we obtain, for y = 90°

E{ww =Tx [0.179 1045 1045 -0.179]T (82a)
which yields the desired maximum wheel torque capacity when

not one wheel has failed

Hw mx 2 1.045 Ty (82b)
It is illuminating to compare the inequality (80) with (82b).

Regarding the required momentum capacity of the wheels,
we first obtain Hyw, from Eq. (60), for ¥ = 90°, Next, recall
that from Eq. (41), the secular roll or yaw momentum at the
end of one orbit is g,Tg (Tg = orbital period) and, from Eq. (42),
the pitch momentum amplitude is g/wg. The least momentum
capacity of a wheel for momentum dumping per orbit and for
optimum cant angle (81) is then

Hw.mx 2 V3 Igaltg/ 2 V2 + V3 Igyl / dwg (83)

Finally, in order 10 calculate the power consumption Py,
nw

versus time t, Eq. (65), we require the quantities Y | I:lwi land !l
i=1
Huw 12 From Eq, (82a),
nw R
3 1Hyil=2449 T,
1=1
which determines the intercept of the P, versus t curve at t = 0.

(84a)

The slope of this curve is proportional to the norm il Hyyw 12
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which, for equal torque requirement, is obtained from Eq. (74)
by inserting Oxy = 1 = Gy;:

Il How 12 = 2.25 T2 (84b)
The indexes (84a) and (84b) should be kept as small as
consistent with performance specifications.

Wheels Contributing to All Three Axes

In Fig. 12, when y = 45°, each of the four wheels
contributes equally to the roll and yaw axes, as evident from Eq.
(69). Reference 6 has examined this configuration to some
depth. For y = 45°, for equal torque requirements (Tx = Ty =T,)
and optimum cant angle (81), Eq. (69) yields

V3 3V3s V3aT

The element with maximum absolute value yields the desired
torque capacity of the wheel:

How = Tx [ - V3/4 (85a)

Fo.mx 23 V3 T/ = 1.3 Ty (85b)
Comparing (85b) with (82), we conclude that, to produce a
torque of magnitude Ty about each of the three axes, the
reaction wheels corresponding to y = 45° configuration must
have 24.4% higher torque capacity than the wheels
corresponding to ¥ = 0° configuration. This is not surprising
because for y = 45°, the wheel's torque capacity is dispersed
along all three axes, whereas in the case y = 0°, it is distributed
along roll and pitch or yaw and pitch only.

Following the derivation of the wheel momentum capacity,
Eq. (83), the desired capacity for the configuration at hand is

Hu.mx 2 V3 (Igal 70 + Igbl / 00 )4 (86)
where the optimum cant angle (81) has been used. Comparing
(86) with (83), we find that Hy, mx now (y = 45°) is smaller
than before (y = 0°), in contrast with the torque capacity
conclusion drawn above. The reason of course is that the secular
momentum Tggs is either about the roll-axis or yaw-axis, not
both, whereas the torque capacity Ty is desired about both roil
and yaw axes.

The two indexes of the power consumption are
calculated with the aid of (85a) and (74):

4

T | Hy; | = 2.598 Ty (872)
i=1

I Hypw 12 = 2.25 T2 (87b)

Comparing (87a) with (84a) and (87b) with (84b), we conclude
that, for producing equal torque about the three spacecraft axes,
and for the same initial wheel speed, the y = 45° wheel-
configuration begins with a slightly higher power consumption
and increases at the same rate as the y = 90° or (° configuration.

One-Wheel Fallure

For the four-wheel configuration shown in Fig. 12, we are
usually interested in either y = 45° or 90° (y = 0° or 90° are
effectively the same). And for these values, because all wheels
are arranged symmetrically, failure of any wheel has the same
consequences as the failure of any other. Therefore, to facilitate
analysis, we arbitrarily assume the failure of wheel-3, and in
that case the 3x4 transformation matrix Cpyw, Eq. (66),
condenses to a 3x3 matrix Chy 3, formed by deleting the third

column of Cpy.The inverse Cpw 371 of Cpw 3 is found and

then used to determine the torque vector ﬁww, following (61):

-Txsy/cn - T ey/em

Tx(sy - cY)/2em + Ty/2sm + Ty(sY + cy)/2cm

Hww=

I

The wheel momentum vector Hww is determined likewise. For
one-wheel failure case, the cant angle is not re-optimized
because the cant angle of the wheels, once installed, is not
changeable in the flight.

0 (wheel-3 failed)

]

(88)

Tx(sy + cv)/2cn + Ty/2sm - Ty(sy - cy)/2cnm

Maximum Torque and Momentum Capacity When v = 90°
For y = 90°, and for the optimum cant angle (81), Eq.
(88) yields

How = Tx[-1225 2091 0 0866]T  (8%)

which in tum yields the required torque capacity of the wheel as

Hw mx 2 2.091 Ty (89b)
This is twice the required torque capacity in the no-failure case,
Eq. (82b).

Following the derivation of the momentum capacity Eq.
(83) for the no-failure case, the momentum capacity for one-
wheel failure case is:

"3 g, 1o/ V2 ]

V3 1gal 1o/ 2Y2 + ¥ 3 igpi 2wp
wa= (90)

0 (wheel-3 failed)

L3 1g,0 to/ 2V 2 + V3 1gpl 1200

Depending upon the relative magnitudes of g, and gp, either
wheel-1 or wheel-2 will yield the required momentum capacity
(wheel4 will yield the same capacity as the wheel-2).

Regarding the two indexes of power consumption, Eq. (89a)
furnishes
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4
T I Hyjl=4.182 Ty

i=1

Il Hww I12 = 6.62 Ty2

(91a)

91b)
which may be compared with the no-failure results, Eqs. (87).

Maximum Torque and Momentum Capacity When y= 45°

For equal torque requirements about the roll, pitch, and yaw
axes (Tx = Ty = Ty), and for the optimum cant angle n* =
35.26, the desired torque capacity of each wheel is

Hw,mx 2 1.732 Ty (92)
juxtaposed to the no-failure size (85b). By comparing the size
(92) with the size (89b), the advantage of Yy = 45° configuration
over ¥ = 0° or 90° configuration emerges: when one wheel fails,
the y = 45° configuration can control the spacecraft with the
wheels of smaller torque capacity than the Y = 0° or 90°
configuration can.The two indexes of power consumption are:

4
3 I Hwil=3V3 T, =5.196 T,
i=1
) Huw 12 = 9 Ty2 (93b)
Comparing (93) with (91), a disadvantage of the y = 45°
configuration is also unveiled: its power consumption is

significantly greater than that of the y = 90° configuration.
Finally, the desired momentum capacity is

Hu,mx = V3 (Igal 70 + Igol / @0) /2 ©4)
Compared with its no-failure counterpart, Eq. (86), the desired
momentum capacity is now twice.

Reference 6 may be reviewed for a different aspect regarding
the selection of cant angle for the configuration at hand.

Six-Whee! Pyramid Configurations
Two-Cant-Angle Configuration
One such configuration is shown in Fig. 15 where the
wheels are arranged symmetrically (y = 60°), wheels 2 and 5
controlling roll and pitch axes, and wheels 1, 3, 4, and 6
controlling all three axes. Because of this fundamental difference
between the two subsets of wheels, the cant angle 13 of the
former subset is allowed to be, in general, different from the
cant angle N of the latter subset. This freedom permits a
greater economy in power consumption, if desired, and allows
the reaction wheels to be of smaller torque and momentum
capacity than the one-cant-angle configuration does.
To determine the optimum cant angles 1, * and 1", define
cj = Cos N i=12)

$i = sin 1 95)

The transformation matrix Cpy (3x6) is

c12 ) c1/2 <12 - <1
Cow=| 51 -s2 s —s1 - -1
Vigrz 0 ANagra Vagrz 0 Vagy
96)

where, from the second and fifth column, it is apparent that the
wheels 2 and 5 do not control the yaw axis, while the remaining
four wheels control all axes. The pseudo-inverse matrix Cp, ' is
determined using the definition (59):

ek (1) ! -
€2 - 0
Cod =] T >Kc12‘2c22J4 - P e 2o 2ty X 2 V3¢
~<1/2 - )
<2 -2 0
L L,/ 1 .
on

and the Euclidean norm of the vector ﬁww is

I Huw 12 = Tx2/(c12 + 2cp2) +

Ty2/2(2512 + $22) + T,2/3¢;2 (98)

which is minimized by the optimum angles n* and n7*
defined by

527\1* = (Tx+Ty-T)/(Tx + Ty + T2),

<Mt = 2T,/ (Tx+ Ty + Ty (99a)
37'7\2* = {2(Tz-Tx) + Ty} / (Tx + Ty + Ta),
cIg*= (BTx~Tp)/(Tx+ Ty + Ty (9%b)

Fig. 16 portrays the optimum angles 11* and 1)2* for specified
torque ratios Ox; and Gy,. Substituting the optimum
trigonometric functions in Eq.(98), the minimum value of the

norm Il Hyv, 12 is found to be

I Huw 12 = (T + Ty + T2 /6 (100)

The three torque components Ty, Ty, T, are independent, and
y

once specified, they are produced by the six Hwi (i=1, ..., 6),
given by Eq. (61). Clearly, these six quantities are constrained
by three relations which are obtained from the expanded version
of Eq. (76). Due 10 these constraints,

I Huww 12 < 6 Hyy mx2 (101)

analogous to the inequality (78) for the 4-wheel configurations.
Combining (101) with (100), we obtain

(Tx+ Ty + T /6 < Hyma 102)
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Fig. 16. Dependence of optimum cant angles 11* and n2* on
the torque ratios Oxy and Oy;

which states that the sum of the maximum torques that can be
produced about the three spacecraft axes must be less than the
total torque capacity of the wheels—the cant angles being the
underlying reason. For equal torque requirements (Ty = Ty =
T,), the inequality (102) reduces to

19

Hwmx > Tx/2 (103)
which may be compared with (80). It is intuitively clear that,
instead of arranging six wheels as shown in Fig. 15, if they
were arranged two wheels per axis, then for equal torque
requirement about the three axes each wheel’s torque capacity
must satisfy

Hwmx 2 Tx/2 (104)
instead of (103).

When the maximum required torque components Ty, Ty, Tz
are all equal, Egs. (99) yield Eq. (81)

sn1*=1/\/§=s112*: Cﬂ1*=‘5/\[§ =cny*;

n,* = 3526°=M,* (105)

The two cant angles, therefore, coalesce and indeed they become
the same as that for the 4-wheel configurations. The desired
maximum torque capacity of the wheel is then found to be

Hwmx 2 0.846 Tx (106)
which is smaller than the torque capacity (82b) or (85b) for 4-
wheel configurations for the same torque requirements about the

spacecraft axes.

Regarding the power consumption, the Euclidean norm
(100) yields

I Hyw 2= 1.5 Tx2 07

Comparing (107) with (84b) and (87b), we observe that for the
same Ty about all three axes, the power consumption of the 6-
wheel configuration increases at a smaller rate than that of the
4-wheel configuration. Finally,

6 .

Y. | Hyj | = 2.509 Ty

i=1
which is within the two values (84a) and (87a) for the two 4-
wheel configurations.

(108)

One-Cant-Angle Configuration

A hexagonal wheel assembly with two different cant angles
might be difficult to install in a spacecraft bus; so we now
optimize a hexagonal configuration with one cant angle. The
pseudo-inverse matrix, Eq. (97), simplifies and Eq. (61) yields
the Euclidean norm

I Hww 12 = (Tx2 + Tz2) / 3c¢2n + Ty2/6s?n

where the subscript 1 of M1 is dropped because now there is
only one cant angle. Minimization of this norm leads to,
surprisingly, the condition (72) for the 4-wheel configurations.
The minimum value of the norm (109) is

(109)

w2 = [Ty + V2 (T2 + 7,2 P76 10)
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Fig. 17. A Three-Wheel Pyramid Configuration

which is two-thirds of the value in (74) for the 4-wheel
configuration. Also, because of the inequality (101), we arrive
at

Hov.mx > [\/(sz + T,2)/18 + Ty/ 6]

which is different form (102) but, for equal torque requirement,
reduces to (103).

The one-wheel failure analysis, considered above for the
four-wheel configurations, becomes unwieldy because of the
5x3 size of the reduced matrix Chyw. Therefore, pertinent results
such as wheel torque capacity and power consumption are
obtained with the aid of a computer and summarized later in
Table 3.

(111)

Three-Wheel Pyramid Configuration

When wheel redundancy is not warranted, when for reasons
of cost and weight the number of wheels must be bare
minimum, and when the torque requirements about the three
axes are not necessarily equal, the three-wheel pyramid
configuration shown in Fig. 17 might be an ideal choice. For
this arrangement, the three wheel angular momentums can be
expressed in spacecraft axes as follows:

H, —n 1/2 ¢1 1/2 e Hyy
Hy 1=] _sq -s7 ~s7 H.p (112)
H, 0 R Vaz cen H.a

wherein the 3x3 transformation matrix is Cpw. Because now
there is no redundancy, the pseudo-inverse matrix Cpy '
becomes the regular inverse matrix Chy~!. After determining

20

Cpw~! and substituting that in Eq. (61), the vector I:_Iww in
terms of the required torque components Ty, Ty, T, turns out to

be
i‘ (113)

For minimization of power consumption, we arrive at the
followin Euclidean norm.

~Tx/3cn + Ty/3sm + Ty/3cm

. 2Tx/3en + Ty/3sm
Hyw =|:
=Tx/3en + Ty/3sm - Tz/3cm

I Huw 12 =2 (Tx? + Tz2) / 3¢2n + Ty23s2n  (114)
which is four-thirds of the norm (71) for 4-wheel configurations
and six-thirds (twice) of the norm (109) for 6-wheel
configuration, implying that if they all begin from zero wheel
speed, the 3-wheel configuration will consume greater power in
the stated ratio. For example, for equal torque requirements (T, =
T, = T,), while the minimum value of the 4-wheel norm is
2.25, that of the 3-wheel norm is 3.0, which is, incidentally,
the same as that for the three orthogonal wheels one per axis.
Moreover, if the cant angle is not set to be the optimum (1 #
n*), the three-wheel pyramid configuration will use more power
than the one-per-axis configuration.Next, the norm (114) yields
the same optimum angle as one for the 4- and 6-wheel
configurations, Eq. (72). For this optimum angle, the following
minimum value of the norm emerges:

W B 12 min = [Ty V2RI T 2178 (o

which is twice the value (110) for the 6-wheel configuration and
four-thirds of the value (71) for the 4-wheel configuration.

The required torque capacity of the wheels for equal torque
requirements about roll, pitch, and yaw axes is found to be

Hu.mx = 1.39 Ty (116)

As a check, note that the norm of ﬂ'ww for three-wheel
configuration is indeed

I How 2 = 3T,2 (117)
equal to that for a one-wheel-per-axis configuration; but the
power consumption of each wheel would be quite different from
that for the one-wheel-per-axis configuration.

Overall Comparison of Six Configurations

When the torque requirements about the roll, pitch, and yaw
axes are not the same, the wheels of different torque capacities
along different axes might be selected; but from the standpoint
of reliability and cost, that is usually not preferred. Perhaps
a more attractive choice is a six-wheel configuration with
identical wheels, the cant angle selected according to the desired
torque ratios. For equal torque requirements, the optimum cant
angle is n* = 35.26°, and the associated wheel torque capacity
for the required torque T, must be at least 0.846 T, [Eq.
(106)]—greater than 0.5 T,, for the two-wheel-per-axis
arrangement. The two power consumption indexes in the case of
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no wheel failure shown in the second row of Table 3 restate
Egs. (107) and (108). When the wheel in the roll-pitch plane
fails, the torque capacity of the remaining five wheels must be
boosted 1o at least 1.311 T, to produce the required torque Tpy,
about the spacecraft axes. This result is obtained by failing the
wheels 1,2,...,6, one at a time, and then determining the
absolute maximum value of the wheel torque in each case for
generating Ty, torque about each of the three spacecraft axes.
T(?e maximum Euclidean norm and the associated absolute sum

Y [Hy,il are also shown in Table 3. Comparing the 2-wheel-per-
i=1

axis and 6-wheel hexagon configurations, we find that for equal
torque requirements, the latter (hexagon) configuration requires
wheels of larger torque capacity and it consumes more power—
and therefore not as favored as—the former configuration.
However, when the roll, pitch, and yaw torque requirements are
not the same, the conclusion will possibly swing in favor of
the hexagon configuration.

Although six-wheel configurations provide substantial
reliability and three-wheel redundancy, they could be expensive,
so four-wheel configurations may be desirable instead, which
provide a one-wheel redundancy. Two such configurations—one
with pyramid base parallel to roll-yaw axes and the other with
the base at 45°—are discussed above. For the purpose of
comparison , call these configurations parallel- and 45 °-
configuration, respectively. Under no-failure case, the 45°-
configuration requires wheels of larger torque capacity than the
parallel-configuration, but in the event of a one wheel failure,
the situation reverses. On the other hand, from the power
consumption viewpoint, under no-failure case, the 45°-
configuration uses only slightly more power than the parallel-
configuration, but the failure of a wheel aggravates this
difference. Because the final design is usually based on one-
wheel failure performance, we infer that if power is relatively
abundant and the wheel torque capacity is at a premium, the 45°-

configuration should be selected. On the other hand, if power is
expensive and the cost of the wheels depends only weakly on its
torque capacity, the parallel configuration will then be a more
prudent choice.

When wheel redundancy is not warranted, only three
wheels—necessary and sufficient for spacecraft control—can be
employed. If the torque and momentum requirements about the
three axes are identical, the control engineer may opt for one-
wheel-per-axis configuration. But in the case of dissimilar
requirements, 3-wheel pyramid, with the cant angle suitable to
the desired torque and momentum ratios, might be preferred.
Table 3 compares these two 3-wheel configurations for equal
torque requirements, and shows that the pyramid configuration
requires wheels of 39% bigger torque capacity, although its
power consumption may be slightly less than or equal to that of
the one-wheel-per-axis configuration.

Fig. 18 sums up the comparison between the power
consumption of the six configurations considered in Table 3 for
equal torque requirements. In particular, the Euclidean norm of

the vector Hyw versus the cant angle for each configuration for
the no-wheel-failure case are shown in the figure. As noted
before, the cant angle n* (n* = 35.26°) for minimum power
consumption is the same for 3-, 4-, or 6-wheel pyramid
configurations.

Concluding Remarks

Among a variety of disturbance torque that act on a
space-craft, only solar radiation is considered in the preceding.
For clarity, the torque expressions are further specialized by
assuming that the vehicle mass center always remains in the
pitch-yaw plane. Although this was true for the spacecraft that
led to this study, the roll component of the vector from
instantaneous vehicle mass center to the geometric center of the
array or bus may not be zero for other spacecraft. Also, while
solar torque varies at orbit frequency, aerodynamic torque, for

Table 3. Comparison of Six Configurations for Equal Torque Requirements about Roll, Pitch, and Yaw Axes,
Based on Minimum Power Consumption

REQUIRED CONTROL TORQUE: Tee= Tey = Tez = Trny

CONFIGURATION |OPTIMUM WORST 1-WHEEL FAILURE
ANGLE NO-FAILURE
n* (Dag) TOARQUE POWER
Required Total Power Total Power Intercep! Faied Wheel Required Torque Faied Total Power | Total Power Imercapt
Torque Consumpiion Rate | Due to Nonzero intial Wheel Producing Capacity Wheel Consumption | Due 1o Nonzero Intial
Capacity Pw Whee| Speed ¥ Max. . ¥ Rate Wheel Spead
. . w1 Torque H\vl-n'uﬂrm( Nw Nyt
Hy.m/ T Zhiz ol . Co 2 .
o 2 L Zni Mo Z 10y T
el [ [
2 WheelAx
A 05 15 30 Ay One 10 Ay 20 3
6-Wheel He
) 200 35.26 0.846 15 2.509 #5 #4 1.31 #4 2.933 3073
4Wheel Pyramid,
Base Edges |l 10 35.26 1.045 2.25 2.449 #1 #2 2.091 #1.2 6.62 4.182
Axes (ny=4) #2 #1
4-Wheel Pyramid,
Baso Edges at 45° 35.26 13 2.25 2.598 #3 #,2 4 1.732 #3 g0 5.196
to X.Z Axes {ny=4)
3-Wheel id
ey Pyam 826 | 12 30 28
3-Onhogonal FAILURE DISALLOWED
Wheals (ny=3) 1 30 30
21
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Fig. 18. Reaction wheel configurations trade-offs for equal roll,
pitch, and yaw torque requirements

instance, may vary at twice the orbit frequency and a yaw bias
torque might arise. For these different circumstances, the torque
and momentum expressions have to be derived afresh to size the
wheels. Regarding the wheel configurations, besides the two
four-wheel configurations considered in the paper, there are two
more: 1) NASA's standard four-wheel arrangement of one wheel
along each body-axis and the fourth wheel inclined equally to all
three axes; and 2) all four wheels canted equally (o the pitch axis
and each controlling roll and yaw as well, but more inclined to
roli-axis than to yaw-axis or the converse depending on the roll
and yaw unequal torque requirements. In the first arrangement,
the cant angle of the fourth wheel is already determined, only
the wheels' torque and momentum capacity need to be sized for
one-wheel failure scenario. In contrast, in the second

22

arrangement, (wo angles must be optimized to minimize power
consumption for given torque and momentum requirements: the
cant angle N with the roll-yaw plane and the angle y with the
roll axis for all four wheels. For these optimum angles, the
torque and momentum capacity of the wheels will be sized
according to one-wheel failure condition, as shown in the paper.
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